$Ann\'{e}e~2005-2006$ $2^{nde}1$

Chap V: Géométrie vectorielle

I. Rappels

1) Définition

Définition 1 : le vecteur $\overrightarrow{u} = \overrightarrow{AB}$ est caractérisé par

- sa direction : la droite (AB),
- son sens : $A \rightarrow B$,
- sa norme ou longueur : $\|\overrightarrow{u}\| = AB$.

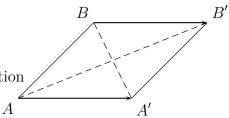
Définition 2 : $\overrightarrow{AB} = \overrightarrow{CD}$ s'ils ont même direction ((AB) et (CD) sont parallèles), même sens et même norme (AB = CD).

On dit que ce sont deux représentants du même vecteur.

Remarque : On a $\overrightarrow{AA} = \overrightarrow{0}$, c'est le vecteur nul.

Théorème 1 : caractérisation du parallélogramme

ABDC est un parallélogramme : si et seulement si $\overrightarrow{AB} = \overrightarrow{CD}$, ou si et seulement si [AD] et [BC] ont même milieu, ou si et seulement si D est l'image de C par la translation de vecteur \overrightarrow{AB} .

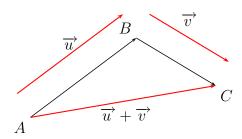


2) Addition de vecteurs

Définition 3 : Soit $\overrightarrow{u} = \overrightarrow{AB}$ un vecteur. On définit $-\overrightarrow{u}$ comme le vecteur ayant même direction que \overrightarrow{u} , sens contraire à \overrightarrow{u} et même norme que \overrightarrow{u} . C'est \overrightarrow{BA} .

On peut représenter la somme de deux vecteurs à l'aide de deux représentants mis « bout à bout » :

Définition 4 : Soint \overrightarrow{u} et \overrightarrow{v} deux vecteurs et A un point quelconque; B et C deux points tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{BC}$ alors on peut alors définir $\overrightarrow{u} + \overrightarrow{v}$ par $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AC}$.



Remarque : La somme de vecteurs représente la « composition » (succession) des translations.

Remarque : L'égalité $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ s'appelle la relation de Chasles.

Propriété 1: On a:

•
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$
,
• $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u}$.

$$\bullet$$
 $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u}$.

Définition 5: On définit $\overrightarrow{u} - \overrightarrow{v}$ par $\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$.

Cette définition bien qu'apparemment « compliquée », correspond à l'idée intuitive de la différence de deux vecteurs.

Exemple: On a ainsi par exemple $\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{AB} + (-\overrightarrow{AB}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{BB} = \overrightarrow{0}$ (ce qui paraît quand même assez logique)..

De même
$$\overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{BO} = \overrightarrow{BO} + \overrightarrow{OA} = \overrightarrow{BA}$$
.

II. Multiplication par un réel

On peut multiplier les vecteurs par des réels (et UNIQUEMENT par des réels).

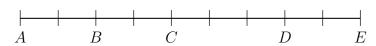
1) **Définition**

Définition 6: Le produit du vecteur \overrightarrow{u} par le réel k est le vecteur noté $k\overrightarrow{u}$ défini par

- si $\overrightarrow{u} = \overrightarrow{0}$ ou k = 0: $k\overrightarrow{u} = \overrightarrow{0}$, si $\overrightarrow{u} \neq \overrightarrow{0}$ et k > 0: $k\overrightarrow{u}$ a même direction et même sens que \overrightarrow{u} et sa norme vaut $||k\overrightarrow{u}|| = k ||\overrightarrow{u}||$,
- si $\overrightarrow{u} \neq \overrightarrow{0}$ et k < 0: $k\overrightarrow{u}$ a même direction et sens opposé à \overrightarrow{u} et sa norme vaut $||k\overrightarrow{u}|| = -k ||\overrightarrow{u}||$.

Remarque: Dans le deux derniers cas on a $||k\overrightarrow{u}|| = |k| ||\overrightarrow{u}||$.

Exemple : A l'aide de la droite graduée ci-dessous on constate par exemple que $\overrightarrow{AC} = 2\overrightarrow{AB}$, $\overrightarrow{BD} = \frac{5}{2} \overrightarrow{AB}$ ou encore $\overrightarrow{EC} = -\frac{5}{2} \overrightarrow{AB}$.



Propriété 2 : on a

- $k\overrightarrow{u} = \overrightarrow{0}$ si et seulement si k = 0 ou $\overrightarrow{u} = \overrightarrow{0}$,
- $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$,
- $(k + k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$.
- $k(k'\overrightarrow{u}) = (kk')\overrightarrow{u}$, $1.\overrightarrow{u} = \overrightarrow{u}$, $(-1).\overrightarrow{u} = -\overrightarrow{u}$.

Exemple: On a par exemple $2\overrightarrow{AB} + 2\overrightarrow{BC} = 2\overrightarrow{AC}$, $\frac{1}{3}(6\overrightarrow{AB}) = 2\overrightarrow{AB}$, et si $2\overrightarrow{AB} = \overrightarrow{0}$ alors A = B.

 $Ann\'{e}e~2005-2006$ $2^{nde}1$

2) Colinéarité

Définition 7 : On dit que deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont colinéaires si l'un est le produit de l'autre par un réel.

C'est-à-dire s'il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

k est appelé le coefficient de colinéarité.

Remarque : C'est la même chose que de dire que \overrightarrow{u} et \overrightarrow{v} ont même direction.

 $Convention: \overrightarrow{0}$ est colinéaire à tout vecteur.

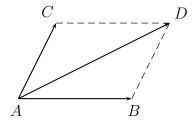
Théorème 2 : • \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires si et seulement si (AB) et (CD) sont parallèles (voire confondues).

• \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires si et seulement si A,B et C sont alignés.

III. Applications géométriques

1) Parallélogramme

Théorème 3 : \overrightarrow{ABDC} est un parallélogramme si et seulement si $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$.



2) Milieux

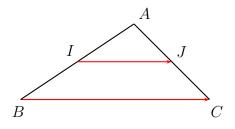
Propriété 3 : I est le milieu de [AB] si et seulement si $\overrightarrow{AI} + \overrightarrow{BI} = \overrightarrow{0}$ ou bien si et seulement si $\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$.

$$\overrightarrow{A}$$
 \overrightarrow{I} \overrightarrow{B}

Théorème 4: Droite des milieux

Soit ABC un triangle, si I le milieu de [AB] et J celui de [AC] alors $\overrightarrow{IJ} = \frac{1}{2} \overrightarrow{AB}$.

Et inversement si $\overrightarrow{IJ} = \frac{1}{2} \overrightarrow{AB}$ alors I est le milieu de [AB] et J celui de [AC].



 $2^{nde}1$ Année 2005-2006

Centre de gravité 3)

Propriété 4 : Soit ABC un triangle, A' le milieu de [BC], B'celui de [AC] et C' celui de [AB].

 ${\cal G}$ est le centre de gravité du triangle ABC :

- si et seulement si $\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AA'}$, ou si et seulement si $\overrightarrow{BG} = \frac{2}{3} \overrightarrow{BB'}$,
- ou si et seulement si $\overrightarrow{CG} = \frac{2}{3} \overrightarrow{CC'}$.

