Année 2006-2007 2^{nde} 1

Chap 10: Fonctions affines et droites

Dans tout le chapitre on munit le plan d'un repère quelconque $(O; \overrightarrow{i}; \overrightarrow{j})$.

I. Fonctions affines

1) <u>Définitions</u>

Définition 1 : On appelle fonction affine toute fonction du type $f: \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto ax+b \end{cases}$ où a et b sont deux nombres réels fixés. Sa courbe représentative C_f est une droite oblique. a s'appelle le coefficient directeur de C_f , b s'appelle l'ordonnée à l'origine de C_f .

Exemple: f(x) = 2x - 3, f(x) = -x...

Remarque : Si a=0, on parle de fonction constante : f(x)=b. Si b=0, on parle de fonction linéaire : f(x)=ax. Une fonction linéaire est aussi une fonction affine.

2) Coefficient directeur

Définition 2 : Soit g une fonction quelconque définie sur un intervalle I, u et v deux nombres de I.

On appelle taux de variation de g entre u et v le nombre $\frac{g(v)-g(u)}{v-u}.$

Exemple : Prenons la fonction $g(x) = x^2 + 1$ définie sur \mathbb{R} . Déterminer le taux de variation de g entre 0 et 2, entre 1 et 3 puis entre -1 et 0.

On a
$$\frac{g(2) - g(0)}{2 - 0} = \frac{5 - 1}{2} = 2$$
, $\frac{g(3) - g(1)}{3 - 1} = \frac{10 - 2}{2} = 4$ et $\frac{g(0) - g(-1)}{0 - (-1)} = \frac{1 - 2}{1} = -1$.

Remarque : A priori un taux de variation d'une fonction dépend des valeurs de u et v.

Année 2006-2007 $2^{nde}1$

La notion de taux de variation permet de caractériser les fonctions affines :

Théorème 1 : • Si f est une fonction affine alors le taux de variation entre deux nombres quelconques est toujours le même et c'est exactement le coefficient directeur de C_f .

C'est à dire que si
$$f(x) = ax + b$$
 alors on a
$$\frac{f(v) - f(u)}{v - u} = a$$
 pour tous les u et v ($u \neq v$).

• $\underline{R\acute{e}ciproquement}$, si f est une fonction définie sur $\mathbb R$ telle que \underline{pour} tous les u et v le taux de variation de f entre u et v est toujours le même (on l'appelle a) alors f est une fonction affine et son coefficient directeur est a.

On a également une propriété sur les variations des fonctions affines :

Proposition 1: Si f est une fonction affine de coefficient directeur a alors :

- f est croissante sur \mathbb{R} si et seulement si a est positif.
- f est décroissante sur \mathbb{R} si et seulement si a est négatif.

3) fonctions affines et droites représentatives

Il faut savoir tracer la courbe C_f à partir de l'expression de la fonction : f(x) = ax + b.

- soit en utilisant l'ordonnée à l'origine et le coefficient directeur,
- soit en cherchant les coordonnées de deux points de la droite C_f

il faut de même savoir retrouver l'expression de $f\left(f(x)=ax+b\right)$ à partir du tracé de C_f .

- ullet soit en relevant l'ordonnée à l'origine b et en calculant un taux de variation qui donnera le coefficient directeur a,
- soit en relevant les coordonnées de deux points de la droite C_f et en en tirant un système 2×2 aux inconnues a et b qu'il faut alors résoudre.

 \longrightarrow à voir en TD.

Année 2006-2007 2^{nde} 1

II. Droites

1) Equations de droites

Définition 3 : • Si la droite (D) n'est pas parallèle à l'axe des ordonnées, elle admet une équation du type y = ax + b où a et b sont des constantes. (D) est la courbe représentative de la fonction affine $f: \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto ax + b \end{cases}$.

• Si la droite (D) est parallèle à l'axe des ordonnées, elle admet une équation du type x = c où c est une constante.

Remarque : (HP) On peut également avoir une équation cartésienne de la droite (D) avec une équation du type : ax + by + c = 0.

L'intérêt est qu'on n'a pas à distinguer si la droite (D) est parallèle à l'axe des ordonnées ou non.

On peut retrouver avec cette équation les deux types d'équations précédentes.

2) Parallélisme

Proposition 2: • Deux droites d'équations x = c et y = ax + b ne sont jamais parallèles.

- Deux droites d'équations x = c et x = c' sont toujours parallèles (et parallèles à l'axe des ordonnées).
- Deux droites d'équation y = ax + b et y = a'x + b' sont parallèles si et seulement si a = a'.