Chap 4:

I. Nombre dérivé

Dans toute cette partie on prend une fonction f définie (au moins) sur un intervalle I. On note \mathscr{C}_f sa courbe représentative.

1) Définition

On rappelle la définition du taux de variation d'une fonction f entre deux points a et b.

Définition 1: On appelle taux de variation de f entre les points a et b le rapport $\frac{f(b)-f(a)}{b-a}$.

On peut à l'aide du taux de variation définir le nombre dérivé de f en a pour a un point de I.

Définition 2: On dit que f est dérivable en a si le taux de variation de f entre a et a+h (où h est un «petit » nombre) a une limite qui est un nombre lorsque h tend vers 0 c'est-à-dire $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ existe et n'est pas ∞ . Cette limite est appelée nombre dérivé de f en a. Elle est notée f'(a).

Exemple: on prend $f(x) = x^2$ et a = 1: $\frac{f(a+h) - f(a)}{h} = \frac{(1+h)^2 - 1}{h} = \frac{h^2 + 2h}{h} = h + 2$ et donc $f'(1) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} (h+2) = 2$.

2) Tangente à une courbe

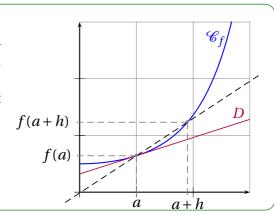
Le nombre dérivé est lié à la notion de tangente à la courbe.

Définition 3: On appelle *tangente à la courbe* \mathscr{C}_f en a la droite qui «touche» \mathscr{C}_f au point d'abscisse a en «collant» à la courbe.

Cette droite D est la droite qui passe par le point de coordonnées (a; f(a)) et dont le coefficient directeur est f'(a).

Une équation de cette tangente est

y = f'(a)(x-a) + f(a).

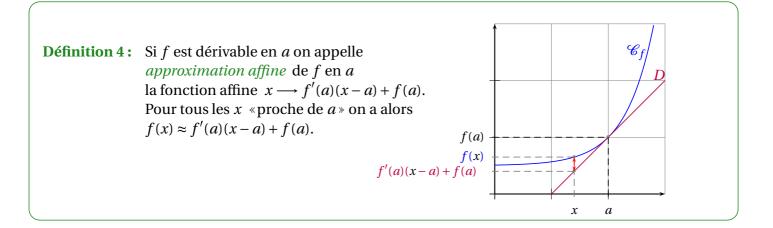


Année 2007-2008 1^{ère} TIE1

Remarque: Cette définition est assez logique au vu de l'activité préparatoire.

3) Approximation affine

On peut se faire une idée «approximative» d'une fonction au voisinage d'un point à l'aide du nombre dérivé. On parle d'approximation affine de f en a.



II. Fonction dérivée

1) Définition

Définition 5: Soit f une fonction définie sur I.

On dit que f est dérivable sur I si f est dérivable en tout point de I.

On appelle fonction dérivée de f la fonction $f': \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f'(x) \end{array} \right.$

Exemple : Par exemple pour la fonction $f(x) = x^2$ on connaît sa fonction dérivée, c'est f'(x) = 2x et on a donc f'(0) = 0, f'(3) = 6 ou f'(1) = 2 qu'on avait déjà calculé.

2) Fonctions de référence

Il existe toute une liste de fonctions dérivées à connaître *par coeur*, ce sont celles des fonctions que l'on rencontre le plus souvent. De plus on sait déterminer la fonction dérivée de n'importe quelle fonction grâce à elles.

On en dresse un tableau récapitulatif.

Année 2007-2008 1^{ère} TIE1

f(x) =	f'(x) =
ax + b	a
x^2	2 <i>x</i>
x^n	nx^{n-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

3) Opérations sur les fonctions

On a des propriétés très pratiques pour pouvoir dériver n'importe quelle fonction à l'aide des dérivées des fonctions de référence.

Là encore on en dresse un tableau récapitulatif.

fonction	fonction dérivée
f+g	f' + g'
5f	5f'
$f \times g$	$f' \times g + f \times g'$
f^2	$2f' \times f$
$\frac{1}{f}$	$-\frac{f'}{f^2}$
$\frac{f}{g}$	$\frac{f' \times g - f \times g'}{g^2}$
f(ax+b)	$a \times f'(ax + b)$