$Ann\'{e}e~2006-200\r{7}$

Corrigé Bac blanc 1

Exercice 1: Taux d'évolution : 4 pts

- 1) a) Au bout d'un mois le capital sera $2000 \times \left(1 + \frac{0.7}{100}\right)$ c'est-à-dire $2014 \in$.

 De même au bout de deux mois le capital sera $2000 \times \left(1 + \frac{0.7}{100}\right)^2$ c'est-à-dire $2028,10 \in$ environ.
 - b) De manière plus générale au bout de n mois le capital sera $2000 \times \left(1 + \frac{0.7}{100}\right)^n$ ou encore $2000 \times 1,007^n$ €.
 - c) Au bout d'une année le coefficient multiplicateur est ainsi $1,007^{12}$ (car il y a douze mois dans une année).

C'est-à-dire environ 1,087 ou encore $1 + \frac{8,7}{100}$.

Le taux d'évolution au bout d'un an est donc environ 8,7%.

- 2) a) De $(1+t_1)^{12}=1$, 12 on tire $1+t_1=1$, $12^{\frac{1}{12}}$ puis $t_1=1$, $12^{\frac{1}{12}}-1$. A 10^{-5} près on trouve $t_1=0$, 00949 ou encore $t_1=0$, 949%.
 - b) De $(1+t_2)^{12}=1,03$ on tire $1+t_2=1,03^{\frac{1}{12}}$ puis $t_2=1,03^{\frac{1}{12}}-1$. A 10^{-5} près on trouve $t_2=0,00247$ ou encore $t_2=0,247\%$.
 - c) Pour les deux premiers mois le taux annuel est de 12% donc le taux mensuel est t_1 et ainsi le coefficient multiplicateur est $(1+t_1)^2$. Pour les dix mois restants le taux annuel étant de 3% le taux mensuel est t_2 et le coefficient multiplicateur est $(1+t_2)^{10}$. Pour l'année complète le coefficient multiplicateur est donc $(1+t_1)^2 \times (1+t_2)^{10}$ c'est-à-dire 1,045 ou encore $1+\frac{4,5}{100}$.

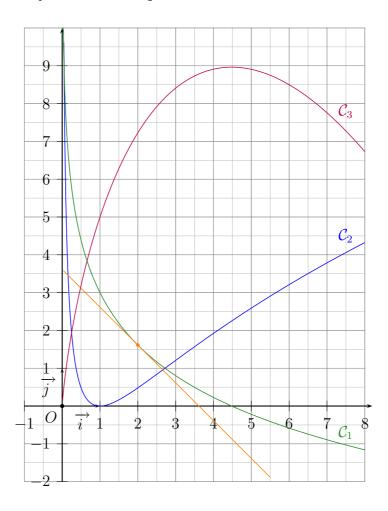
Le taux d'évolution du capital sur un an est donc 4,5%.

Exercice 2: QCM:5 pts

- 1) La bonne réponse est la réponse b).
- 2) La bonne réponse est la réponse b). L'équation de cette tangente est $y=(\ln)'(1)(x-1)+\ln(1)$ c'est-à-dire $y=\frac{1}{1}(x-1)+0=x-1$.
- 3) La bonne réponse est la réponse c). Pour que cette formule soit vraie, sachant que $(x-1)(x+1) = x^2 1$, il faut que x-1 et x+1 soient strictement positifs c'est-à-dire x > 1 et x > -1. La condition globale est donc x > 1.
- 4) La bonne réponse est la réponse c). L'équation de cette tangente est y = f'(2)(x-2) + f(2) c'est-à-dire y = 8(x-2) + 5 = 8x 11.
- 5) La bonne réponse est la réponse b). On a $\left(1+\frac{t}{100}\right)^5=1+\frac{8,9}{100}$ d'où $t\approx 1,72\%$.

 $Ann\'{e}e~2006-200\r{7}$

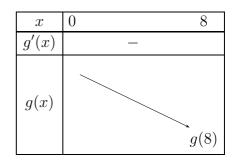
Exercice 3: Etude de fonctions: 6 pts



Partie A

- 1) a) On a $f'(x) = 2 \times \frac{1}{x} \times \ln(x) = \frac{2\ln(x)}{x}$ et $g'(x) = -2 \times \frac{1}{x} = \frac{-2}{x}$ sur l'intervalle]0;8].
 - b) Sur l'intervalle]0;8] x est strictement positif donc f' est du signe de $2\ln(x)$ c'est-à-dire de $\ln(x)$ et de même g' est du signe de -2 donc négatif. f' est donc négative sur]0;1[et positive sur]1;8] (elle est nulle en 1). g' est négative sur]0;8].
 - c) A l'aide des signes de f' et g' on dresse les tableaux de variations de f et g :

	x	0 1 8
٠	f'(x)	- 0 +
	f(x)	f(8)



- d) On a $h(1) = 5 2\ln(1) = 5$.
- 2) La courbe C_3 est la seule pour laquelle l'image en x=1 est 5, c'est donc la courbe représentative de h. La courbe C_1 est décroissante sur]0;8] c'est donc la courbe de g et de même la courbe C_2 a bien les variations de f, c'est donc sa courbe représentative.

 $Ann\'{e}e~2006-200\r{7}$

3) L'équation de la tangente à la courbe C_1 au point d'abscisse 2 a pour équation $y = g'(2)(x-2) + g(2) = \frac{-2}{2}(x-2) + 3 - 2\ln(2) = -x + 5 - 2\ln(2)$. On trace cette droite sur le graphique.

Partie B

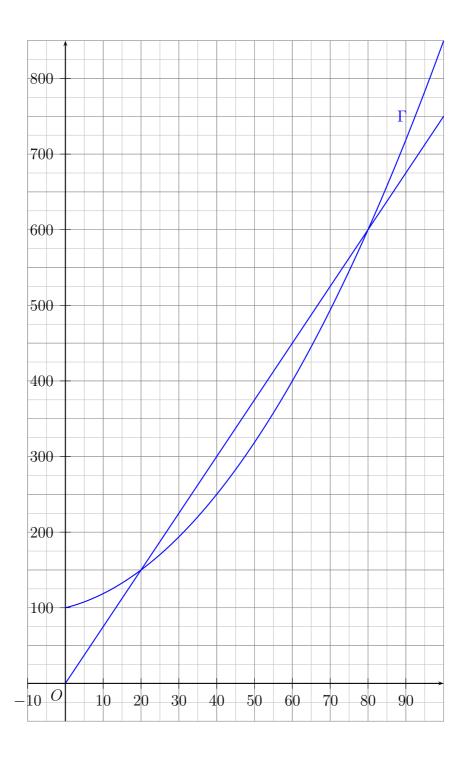
- 1) On réécrit l'équation $(\ln(x) + 3) \times (\ln(x) 1) = 0 : (\ln(x))^2 \ln(x) + 3\ln(x) 3 = 0$ puis $(\ln(x))^2 + 2\ln(x) 3 = 0$ ou encore $(\ln(x))^2 = 3 2\ln(x)$ c'est-à-dire f(x) = g(x). L'équation f(x) = g(x) est bien équivalente à $(\ln(x) + 3) \times (\ln(x) 1) = 0$.
- 2) A l'aide de la question précédente on trouve qu'il faut : soit $\ln(x) + 3 = 0$ soit $\ln(x) 1 = 0$ c'est-à-dire $\ln(x) = -3 = -3 \times 1 = -3 \ln(e) = \ln(e^{-3})$ ou $\ln(x) = 1 = \ln(e)$ et donc les solutions de l'équation de départ sont $x = e^{-3}$ et x = e.
- 3) Les courbes C_1 et C_2 se croisent aux points d'abscisses e^{-3} et e.

Exercice 4: En Economie: 5 pts

Partie A

- 1) a) On lit sur le graphique que pour une production journalière de 40 litres le coût de fabrication est 250€, pour une production de 90 litres il est de 720 €environ.
 - b) La production journalière correspondant à un coût de fabrication de 525 euros est environ 73 litres.
 - c) Pour que le coût de fabrication n'excède pas 400 euros la production maximale réalisable est 60 litres.
- 2) On trace, dans le repère de l'énoncé, la droite d'équation y=7,5x. Pour être bénéficiaire il faut que le coût de production soit inférieur au prix de vente c'està-dire que C(x) soit inférieur à g(x). L'entreprise doit ainsi fabriquer entre 20 et 80 litres de produit.

 $Ann\'{e}e~2006-2007$ $T^{erm}STG2$



Partie B

- 1) Pour tout nombre réel x de l'intervalle [0;100] on a : $g(x) C(x) = 7, 5x 0,0625x^2 1,25x 100 = -0,0625x^2 + 6,25x 100.$ Par ailleurs $56,25 0,0625(x 50)^2 = 56,25 0,0625(x^2 100x + 2500) = 56,25 0,0625x^2 + 6,25x 156,25 = -0,0625x^2 + 6,25x 100.$ Ainsi on a bien $g(x) C(x) = 56,25 0,0625(x 50)^2$.
- 2) Le bénéfice est maximal pour l'entreprise lorsque g(x)-C(x) est maximal. D'après la question qui précéde puisque un carré est toujours positif $g(x)-C(x)\leqslant 56,25$ et on a $g(50)-C(50)=56,25-0,0625\times 0=56,25$ donc le bénéfice maximal est 56,25 atteint pour une production de 50 litres.